Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Genome Biol Evol ; 16(5)2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38619022

RESUMEN

New World mabuyine skinks are a diverse radiation of morphologically cryptic lizards with unique reproductive biologies. Recent studies examining population-level data (morphological, ecological, and genomic) have uncovered novel biodiversity and phenotypes, including the description of dozens of new species and insights into the evolution of their highly complex placental structures. Beyond the potential for this diverse group to serve as a model for the evolution of viviparity in lizards, much of the taxonomic diversity is concentrated in regions experiencing increasing environmental instability from climate and anthropogenic change. Consequently, a better understanding of genome structure and diversity will be an important tool in the adaptive management and conservation of this group. Skinks endemic to Caribbean islands are particularly vulnerable to global change with several species already considered likely extinct and several remaining species either endangered or threatened. Combining PacBio long-read sequencing, Hi-C, and RNAseq data, here we present the first genomic resources for this group by describing new chromosome-level reference genomes for the Puerto Rican Skink Spondylurus nitidus and the Culebra Skink S. culebrae. Results indicate two high quality genomes, both ∼1.4 Gb, assembled nearly telomere to telomere with complete mitochondrion assembly and annotation.


Asunto(s)
Genoma , Lagartos , Lagartos/genética , Animales , Cromosomas/genética , Viviparidad de Animales no Mamíferos/genética , Femenino , Región del Caribe
2.
Ecotoxicol Environ Saf ; 264: 115487, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37729804

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is transmitted human-to-human via aerosols and air-borne droplets. Therefore, capturing and destroying viruses from indoor premises are essential to reduce the probability of human exposure and virus transmission. While the heating, ventilation, and air conditioning (HVAC) systems help in reducing the indoor viral load, a targeted approach is required to effectively remove SARS-CoV-2 from indoor air to address human exposure concerns. The present study demonstrates efficient trapping and destruction of SARS-CoV-2 via nano-enabled filter technology using the UV-A-stimulated photoelectrochemical oxidation (PECO) process. Aerosols containing SARS-CoV-2 were generated by nebulization inside an air-controlled test chamber where an air purifier (Air Mini+) was placed. The study demonstrated the efficient removal of SARS-CoV-2 (99.98 %) from the test chamber in less than two minutes and PECO-assisted destruction (over 99%) on the filtration media in 1 h. Furthermore, in a real-world scenario, the Molekule Air-Pro air purifier removed SARS-CoV-2 (a negative RT-qPCR result post-running the filter device) from the circulating air in a COVID-19 testing facility. Overall, the ability of two FDA-approved class II medical devices, Molekule Air-Mini+ and Air-Pro air purifiers, to remove and destroy SARS-CoV-2 in indoor settings was successfully demonstrated. The study indicates that as the "tripledemic" of COVID-19, influenza, and respiratory syncytial virus (RSV) overwhelm the healthcare facilities in the USA, the use of a portable air filtration device will help contain the spread of the viruses in close door facilities, such as in schools and daycare facilities.


Asunto(s)
Filtros de Aire , Contaminación del Aire Interior , COVID-19 , Humanos , SARS-CoV-2 , Prueba de COVID-19 , Aerosoles y Gotitas Respiratorias , Contaminación del Aire Interior/prevención & control
3.
Artículo en Inglés | MEDLINE | ID: mdl-36673732

RESUMEN

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and resulting COVID-19 (coronavirus disease 2019) pandemic have required mass diagnostic testing, often taking place in testing sites within hospitals, clinics, or at satellite locations. To establish the potential of SARS-CoV-2 aerosol transmission and to identify junctures during testing that result in increased viral exposure, aerosol and surface samples were examined for the presence of SARS-CoV-2 RNA from locations within Nebraska Medicine COVID-19 testing and vaccine clinics. Aerosols containing SARS-CoV-2 RNA detected within clinics suggest viral shedding from infected individuals. SARS-CoV-2 RNA detection in aerosol samples was shown to correlate with clinic operation and patient infection, as well as with community infection findings. Additionally, SARS-CoV-2 RNA was detected in surface samples collected from clinics. The presence of SARS-CoV-2 RNA in aerosols in these clinics supports the continued use of respiratory protection and sanitization practices for healthcare workers, and other workers with public facing occupations.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , COVID-19/epidemiología , Prueba de COVID-19 , ARN Viral , Aerosoles y Gotitas Respiratorias
4.
Heredity (Edinb) ; 130(1): 14-21, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36333595

RESUMEN

Discordance between different genomic regions, often identified through multilocus sequencing of selected markers, presents particular difficulties in identifying historical processes which drive species diversity and boundaries. Mechanisms causing discordance, such as incomplete lineage sorting or introgression due to interspecific hybridization, are better identified based on population-level genomic datasets. In the toads of the Rhinella granulosa species group, patterns of mito-nuclear discordance and potential hybridization have been reported by several studies. However, these patterns were proposed based on few loci, such that alternative mechanisms behind gene-tree heterogeneity cannot be ruled out. Using genome-wide ddRADseq loci from a subset of species within this clade, we found only partial concordance between currently recognized species-level taxon boundaries and patterns of genetic structure. While most taxa within the R. granulosa group correspond to clades, genetic clustering analyses sometimes grouped distinct taxonomic units into a single cluster. Moreover, levels of admixture between inferred clusters were limited and restricted to a single taxon pair which is best explained by incomplete lineage sorting as opposed to introgressive hybridization, according to D-statistics results. These findings contradict previous assertions of widespread cryptic diversity and gene flow within the R. granulosa clade. Lastly, our analyses suggest that diversification events within the Rhinella granulosa group mostly dated back to the early Pliocene, being generally younger than species divergences in other closely related clades that present high levels of cross-species gene flow. This finding uniquely contradicts common assertions that this young clade of toads exhibits interspecific hybridization.


Asunto(s)
Anuros , ADN Mitocondrial , Introgresión Genética , ADN Mitocondrial/genética , Flujo Génico , Genoma , Hibridación Genética , Filogenia , Anuros/genética , Conducta Sexual , Conducta Animal
5.
Viruses ; 14(6)2022 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-35746746

RESUMEN

Negative pressure isolation of COVID-19 patients is critical to limiting the nosocomial transmission of SARS-CoV-2; however, airborne isolation rooms are limited. Alternatives to traditional isolation procedures are needed. The evaluation of an Infectious Aerosol Capture Mask (IACM) that is designed to augment the respiratory isolation of COVID-19 patients is described. Efficacy in capturing exhaled breath aerosols was evaluated using laboratory experimentation, computational fluid dynamics (CFD) and measurements of exhaled breath from COVID-19 patients and their surroundings. Laboratory aerosol experiments indicated that the mask captured at least 99% of particles. Simulations of breathing and speaking showed that all particles between 0.1 and 20 µm were captured either on the surface of the mask or in the filter. During coughing, no more than 13% of the smallest particles escaped the mask, while the remaining particles collected on the surfaces or filter. The total exhaled virus concentrations of COVID-positive patients showed a range from undetectable to 1.1 × 106 RNA copies/h of SARS-CoV-2, and no SARS-CoV-2 aerosol was detected in the samples collected that were adjacent to the patient when the mask was being worn. These data indicate that the IACM is useful for containing the exhaled aerosol of infected individuals and can be used to quantify the viral aerosol production rates during respiratory activities.


Asunto(s)
COVID-19 , SARS-CoV-2 , Aerosoles , COVID-19/prevención & control , Humanos , Aerosoles y Gotitas Respiratorias , Virión
6.
Opt Express ; 30(2): 1442-1451, 2022 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-35209304

RESUMEN

The circular intensity differential scattering (CIDS), i.e. the normalized Mueller matrix element -S14/S11, can be used to detect the helical structures of DNA molecules in biological systems, however, no CIDS measurement from single particles has been reported to date. We report an innovative method for measuring CIDS phase functions from single particles individually flowing through a scattering laser beam. CIDS signals were obtained from polystyrene latex (PSL) microspheres with or without coating of DNA molecules, tryptophan particles, and aggregates of B. subtilis spores, at the size of 3 µm in diameter. Preliminary results show that this method is able to measure CIDS phase function in tens of microseconds from single particles, and has the ability to identify particles containing biological molecules.


Asunto(s)
Partículas y Gotitas de Aerosol/análisis , Bacillus subtilis/citología , Monitoreo del Ambiente/instrumentación , Material Particulado/análisis , Poliestirenos/análisis , Triptófano/análisis , Dispersión Dinámica de Luz , Diseño de Equipo , Microesferas , Tamaño de la Partícula
7.
JMIR Med Educ ; 8(1): e23845, 2022 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-35142625

RESUMEN

BACKGROUND: On March 11, 2020, the New Mexico Governor declared a public health emergency in response to the COVID-19 pandemic. The New Mexico medical advisory team contacted University of New Mexico (UNM) faculty to form a team to consolidate growing information on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its disease to facilitate New Mexico's pandemic management. Thus, faculty, physicians, staff, graduate students, and medical students created the "UNM Global Health COVID-19 Intelligence Briefing." OBJECTIVE: In this paper, we sought to (1) share how to create an informative briefing to guide public policy and medical practice and manage information overload with rapidly evolving scientific evidence; (2) determine the qualitative usefulness of the briefing to its readers; and (3) determine the qualitative effect this project has had on virtual medical education. METHODS: Microsoft Teams was used for manual and automated capture of COVID-19 articles and composition of briefings. Multilevel triaging saved impactful articles to be reviewed, and priority was placed on randomized controlled studies, meta-analyses, systematic reviews, practice guidelines, and information on health care and policy response to COVID-19. The finalized briefing was disseminated by email, a listserv, and posted on the UNM digital repository. A survey was sent to readers to determine briefing usefulness and whether it led to policy or medical practice changes. Medical students, unable to partake in direct patient care, proposed to the School of Medicine that involvement in the briefing should count as course credit, which was approved. The maintenance of medical student involvement in the briefings as well as this publication was led by medical students. RESULTS: An average of 456 articles were assessed daily. The briefings reached approximately 1000 people by email and listserv directly, with an unknown amount of forwarding. Digital repository tracking showed 5047 downloads across 116 countries as of July 5, 2020. The survey found 108 (95%) of 114 participants gained relevant knowledge, 90 (79%) believed it decreased misinformation, 27 (24%) used the briefing as their primary source of information, and 90 (79%) forwarded it to colleagues. Specific and impactful public policy decisions were informed based on the briefing. Medical students reported that the project allowed them to improve on their scientific literature assessment, stay current on the pandemic, and serve their community. CONCLUSIONS: The COVID-19 briefings succeeded in informing and guiding New Mexico policy and clinical practice. The project received positive feedback from the community and was shown to decrease information burden and misinformation. The virtual platforms allowed for the continuation of medical education. Variability in subject matter expertise was addressed with training, standardized article selection criteria, and collaborative editing led by faculty.

8.
J Expo Sci Environ Epidemiol ; 32(5): 706-711, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-34408261

RESUMEN

BACKGROUND: Aerosol transmission of COVID-19 is the subject of ongoing policy debate. Characterizing aerosol produced by people with COVID-19 is critical to understanding the role of aerosols in transmission. OBJECTIVE: We investigated the presence of virus in size-fractioned aerosols from six COVID-19 patients admitted into mixed acuity wards in April of 2020. METHODS: Size-fractionated aerosol samples and aerosol size distributions were collected from COVID-19 positive patients. Aerosol samples were analyzed for viral RNA, positive samples were cultured in Vero E6 cells. Serial RT-PCR of cells indicated samples where viral replication was likely occurring. Viral presence was also investigated by western blot and transmission electron microscopy (TEM). RESULTS: SARS-CoV-2 RNA was detected by rRT-PCR in all samples. Three samples confidently indicated the presence of viral replication, all of which were from collected sub-micron aerosol. Western blot indicated the presence of viral proteins in all but one of these samples, and intact virions were observed by TEM in one sample. SIGNIFICANCE: Observations of viral replication in the culture of submicron aerosol samples provides additional evidence that airborne transmission of COVID-19 is possible. These results support the use of efficient respiratory protection in both healthcare and by the public to limit transmission.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , ARN Viral/análisis , Aerosoles y Gotitas Respiratorias , Proteínas Virales
9.
Mol Ecol ; 31(3): 978-992, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34784086

RESUMEN

The effects of genetic introgression on species boundaries and how they affect species' integrity and persistence over evolutionary time have received increased attention. The increasing availability of genomic data has revealed contrasting patterns of gene flow across genomic regions, which impose challenges to inferences of evolutionary relationships and of patterns of genetic admixture across lineages. By characterizing patterns of variation across thousands of genomic loci in a widespread complex of true toads (Rhinella), we assess the true extent of genetic introgression across species thought to hybridize to extreme degrees based on natural history observations and multilocus analyses. Comprehensive geographic sampling of five large-ranged Neotropical taxa revealed multiple distinct evolutionary lineages that span large geographic areas and, at times, distinct biomes. The inferred major clades and genetic clusters largely correspond to currently recognized taxa; however, we also found evidence of cryptic diversity within taxa. While previous phylogenetic studies revealed extensive mitonuclear discordance, our genetic clustering analyses uncovered several admixed individuals within major genetic groups. Accordingly, historical demographic analyses supported that the evolutionary history of these toads involved cross-taxon gene flow both at ancient and recent times. Lastly, ABBA-BABA tests revealed widespread allele sharing across species boundaries, a pattern that can be confidently attributed to genetic introgression as opposed to incomplete lineage sorting. These results confirm previous assertions that the evolutionary history of Rhinella was characterized by various levels of hybridization even across environmentally heterogeneous regions, posing exciting questions about what factors prevent complete fusion of diverging yet highly interdependent evolutionary lineages.


Uma atenção crescente tem sido dada aos efeitos da introgressão genética nos limites das espécies e como eles afetam a integridade e a persistência das espécies ao longo do tempo evolutivo. A crescente disponibilidade de dados genômicos revelou padrões contrastantes de fluxo gênico entre regiões do genoma, o que impõe desafios às inferências de relações evolutivas e de padrões de mistura genética entre linhagens. Com base em padrões de variação em milhares de marcadores genômicos em um complexo amplamente distribuído de sapos (Rhinella), avaliamos a extensão de introgressão genética entre espécies que, acredita-se, hibridizam amplamente com base em observações de história natural e análises multi-locus. Nossa amostragem geográfica abrangente de cinco táxons neotropicais revelou várias linhagens evolutivas distintas que abrangem grandes áreas geográficas e, por vezes, biomas distintos. Os principais clados e grupos genéticos inferidos correspondem em grande parte aos táxons atualmente reconhecidos; no entanto, também encontramos evidência de diversidade críptica. De acordo com estudos filogenéticos anteriores que revelaram extensa discordância mitonuclear, nossas análises de agrupamento genético revelaram vários indivíduos geneticamente misturados. Adicionalmente, análises demográficas históricas sugerem que a história evolutiva desses sapos envolveu fluxo gênico entre táxons tanto em épocas antigas quanto recentes. Por fim, testes ABBA-BABA revelaram amplo compartilhamento de alelos entre espécies, um padrão que pode ser atribuído à introgressão genética ao invés de sorteamento incompleto de alelos entre linhagens. Esses resultados confirmam sugestões anteriores de que a história evolutiva de Rhinella foi caracterizada por vários níveis de hibridização, mesmo entre ambientes distintos, levantando questões sobre quais fatores impedem a fusão completa de linhagens evolutivas divergentes porém altamente interdependentes.


Asunto(s)
Bufonidae , Flujo Génico , Hibridación Genética , Alelos , Animales , Bufonidae/genética , Demografía , Filogenia , América del Sur
10.
PLoS One ; 16(12): e0246916, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34851965

RESUMEN

The COVID-19 pandemic has reintroduced questions regarding the potential risk of SARS-CoV-2 exposure amongst passengers on an aircraft. Quantifying risk with computational fluid dynamics models or contact tracing methods alone is challenging, as experimental results for inflight biological aerosols is lacking. Using fluorescent aerosol tracers and real time optical sensors, coupled with DNA-tagged tracers for aerosol deposition, we executed ground and inflight testing on Boeing 767 and 777 airframes. Analysis here represents tracer particles released from a simulated infected passenger, in multiple rows and seats, to determine the exposure risk via penetration into breathing zones in that row and numerous rows ahead and behind the index case. We present here conclusions from 118 releases of fluorescent tracer particles, with 40+ Instantaneous Biological Analyzer and Collector sensors placed in passenger breathing zones for real-time measurement of simulated virus particle penetration. Results from both airframes showed a minimum reduction of 99.54% of 1 µm aerosols from the index source to the breathing zone of a typical passenger seated directly next to the source. An average 99.97 to 99.98% reduction was measured for the breathing zones tested in the 767 and 777, respectively. Contamination of surfaces from aerosol sources was minimal, and DNA-tagged 3 µm tracer aerosol collection techniques agreed with fluorescent methodologies.


Asunto(s)
Aeronaves , Simulación por Computador , Colorantes Fluorescentes/química , Aerosoles y Gotitas Respiratorias/química , COVID-19/patología , COVID-19/prevención & control , COVID-19/virología , ADN/química , ADN/metabolismo , Humanos , Máscaras , Microesferas , Aerosoles y Gotitas Respiratorias/virología , SARS-CoV-2/genética , SARS-CoV-2/aislamiento & purificación
12.
Sci Rep ; 10(1): 12732, 2020 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-32728118

RESUMEN

The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) originated in Wuhan, China in late 2019, and its resulting coronavirus disease, COVID-19, was declared a pandemic by the World Health Organization on March 11, 2020. The rapid global spread of COVID-19 represents perhaps the most significant public health emergency in a century. As the pandemic progressed, a continued paucity of evidence on routes of SARS-CoV-2 transmission has resulted in shifting infection prevention and control guidelines between classically-defined airborne and droplet precautions. During the initial isolation of 13 individuals with COVID-19 at the University of Nebraska Medical Center, we collected air and surface samples to examine viral shedding from isolated individuals. We detected viral contamination among all samples, supporting the use of airborne isolation precautions when caring for COVID-19 patients.


Asunto(s)
Aerosoles/análisis , Betacoronavirus/genética , Infecciones por Coronavirus/patología , Neumonía Viral/patología , Contaminantes Atmosféricos/análisis , Betacoronavirus/aislamiento & purificación , Betacoronavirus/fisiología , COVID-19 , Infecciones por Coronavirus/transmisión , Infecciones por Coronavirus/virología , Humanos , Control de Infecciones/métodos , Pandemias , Neumonía Viral/transmisión , Neumonía Viral/virología , Salud Pública , ARN Viral/aislamiento & purificación , ARN Viral/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , SARS-CoV-2 , Factores de Tiempo
13.
Mol Phylogenet Evol ; 143: 106661, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31644958

RESUMEN

Knowledge of how contemporary and historical factors drive patterns of genetic structure across geographic space can shed light on the processes underlying diversification. This approach is especially fruitful in studies of widespread species or species clades that occur across multiple environmental conditions and biomes. In the Neotropics, specifically, molecular data from widespread vertebrate species have revealed high levels of lineage diversity and spatial genetic structure - yet studies that explore the possible correlates of local structure patterns are lacking. We investigate the distribution of lineage diversity within two widespread South American skink species complexes of the genus Mabuya. We characterize genetic structure and diversity in these widely ranged lizards, and identify potential geographic and environmental correlates, to shed light on the processes that promote lineage diversification across the heterogeneous landscapes which they occupy. In both groups, we found mitochondrial lineages to be spatially structured along the coastal forests and the savannas of Brazil. These mtDNA patterns are, however, not shared with those inferred from nuclear DNA markers. The geographic location of major mitochondrial genetic breaks is consistent with those of other taxa, suggesting common responses to former landscape change in eastern South America, particularly along geological faults. Genetic differentiation is correlated with environmental turnover and geographic separation in one, but not in the other, group of skinks. Compared to other studies of similarly widely distributed organisms, the link between spatial environmental gradients and genetic differentiation is not as strong or consistent, suggesting a more complex history underlying current phylogeographic patterns. Our genetic data indicate the existence of yet undescribed diversity in wide-ranging lizards, and the value of phylogenetic and phylogeographic studies of similarly understudied species.


Asunto(s)
Lagartos/clasificación , Lagartos/genética , Animales , Brasil , Núcleo Celular/genética , ADN Mitocondrial/química , Ecosistema , Bosques , Estructuras Genéticas , Variación Genética , Pradera , Filogenia , Filogeografía , Clima Tropical
14.
Mol Ecol ; 26(19): 5245-5263, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28748565

RESUMEN

The accumulation of biodiversity in tropical forests can occur through multiple allopatric and parapatric models of diversification, including forest refugia, riverine barriers and ecological gradients. Considerable debate surrounds the major diversification process, particularly in the West African Lower Guinea forests, which contain a complex geographic arrangement of topographic features and historical refugia. We used genomic data to investigate alternative mechanisms of diversification in the Gaboon forest frog, Scotobleps gabonicus, by first identifying population structure and then performing demographic model selection and spatially explicit analyses. We found that a majority of population divergences are best explained by allopatric models consistent with the forest refugia hypothesis and involve divergence in isolation with subsequent expansion and gene flow. These population divergences occurred simultaneously and conform to predictions based on climatically stable regions inferred through ecological niche modelling. Although forest refugia played a prominent role in the intraspecific diversification of S. gabonicus, we also find evidence for potential interactions between landscape features and historical refugia, including major rivers and elevational barriers such as the Cameroonian Volcanic Line. We outline the advantages of using genomewide variation in a model-testing framework to distinguish between alternative allopatric hypotheses, and the pitfalls of limited geographic and molecular sampling. Although phylogeographic patterns are often species-specific and related to life-history traits, additional comparative studies incorporating genomic data are necessary for separating shared historical processes from idiosyncratic responses to environmental, climatic and geological influences on diversification.


Asunto(s)
Anuros/clasificación , Biodiversidad , Evolución Biológica , Filogenia , Animales , Camerún , Congo , ADN Mitocondrial/genética , Guinea Ecuatorial , Bosques , Gabón , Flujo Génico , Modelos Biológicos , Nigeria , Filogeografía , Clima Tropical
15.
Mol Ecol ; 25(20): 5174-5186, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27564209

RESUMEN

Shifts in the geographic distribution of habitats over time can promote dispersal and vicariance, thereby influencing large-scale biogeographic patterns and ecological processes. An example is that of transient corridors of suitable habitat across disjunct but ecologically similar regions, which have been associated with climate change over time. Such connections likely played a role in the assembly of tropical communities, especially within the highly diverse Amazonian and Atlantic rainforests of South America. Although these forests are presently separated by open and dry ecosystems, paleoclimatic and phylogenetic evidence suggest that they have been transiently connected in the past. However, little is known about the timing, magnitude and the distribution of former forest connections. We employ sequence data at multiple loci from three codistributed arboreal lizards (Anolis punctatus, Anolis ortonii and Polychrus marmoratus) to infer the phylogenetic relationships among Amazonian and Atlantic Forest populations and to test alternative historical demographic scenarios of colonization and vicariance using coalescent simulations and approximate Bayesian computation (ABC). Data from the better-sampled Anolis species support colonization of the Atlantic Forest from eastern Amazonia. Hierarchical ABC indicates that the three species colonized the Atlantic Forest synchronously during the mid-Pleistocene. We find support of population bottlenecks associated with founder events in the two Anolis, but not in P. marmoratus, consistently with their distinct ecological tolerances. Our findings support that climatic fluctuations provided key opportunities for dispersal and forest colonization in eastern South America through the cessation of environmental barriers. Evidence of species-specific histories strengthens assertions that biological attributes play a role in responses to shared environmental change.


Asunto(s)
Distribución Animal , Lagartos/genética , Filogenia , Bosque Lluvioso , Animales , Teorema de Bayes , Cambio Climático , Lagartos/clasificación , Modelos Genéticos , Filogeografía , Análisis de Secuencia de ADN , América del Sur
16.
Proc Biol Sci ; 281(1792)2014 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-25122231

RESUMEN

Phylogeographic endemism, the degree to which the history of recently evolved lineages is spatially restricted, reflects fundamental evolutionary processes such as cryptic divergence, adaptation and biological responses to environmental heterogeneity. Attempts to explain the extraordinary diversity of the tropics, which often includes deep phylogeographic structure, frequently invoke interactions of climate variability across space, time and topography. To evaluate historical versus contemporary drivers of phylogeographic endemism in a tropical system, we analyse the effects of current and past climatic variation on the genetic diversity of 25 vertebrates in the Brazilian Atlantic rainforest. We identify two divergent bioclimatic domains within the forest and high turnover around the Rio Doce. Independent modelling of these domains demonstrates that endemism patterns are subject to different climatic drivers. Past climate dynamics, specifically areas of relative stability, predict phylogeographic endemism in the north. Conversely, contemporary climatic heterogeneity better explains endemism in the south. These results accord with recent speleothem and fossil pollen studies, suggesting that climatic variability through the last 250 kyr impacted the northern and the southern forests differently. Incorporating sub-regional differences in climate dynamics will enhance our ability to understand those processes shaping high phylogeographic and species endemism, in the Neotropics and beyond.


Asunto(s)
Biodiversidad , Clima , Variación Genética/genética , Filogeografía , Vertebrados/genética , Animales , Secuencia de Bases , Evolución Biológica , Brasil , Datos de Secuencia Molecular , Dinámica Poblacional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...